In the following report, Hanover Research reviews the effects of achievement or ability tracking on student achievement and educational equity. The report also suggests strategies to mitigate or eliminate the negative aspects of tracking.
TABLE OF CONTENTS

Executive Summary and Key Findings ..3
 INTRODUCTION ..3
 KEY FINDINGS ..3

Section I: Impacts of Course Tracking ...5
 OVERVIEW ...5
 IMPACTS OF STUDENT TRACKING ...8
 Lower Tracks ..8
 Average or General Tracks ..12
 Higher Tracks ..13
 ABILITY TRACKING OUTSIDE THE UNITED STATES ...15

Section II: Strategies to Reduce the Impact of Course Tracking ..17
 STRATEGIES TO MITIGATE NEGATIVE IMPACTS OF TRACKING ..17
 DETRACKING STRATEGIES ...18
 Support for Teachers ..19
 Ensuring Stakeholder Support ..20
 PROFILES OF DETRACKED SCHOOLS ...21
 Rockville Centre Union Free School District ...21
 Bellevue School District ..25
 Stamford Public Schools ..26
EXECUTIVE SUMMARY AND KEY FINDINGS

INTRODUCTION

In this report, Hanover Research reviews achievement or ability tracking in public school systems. This report uses the term “tracking” to refer to any system in which students’ prior academic achievement or ability influences their classroom assignment, and “detracking” to refer to the practice of reducing or eliminating tracking. Similarly, “deleveling” refers to the reduction of tracks within a school system.

This report includes the following sections:

- **Section I** reviews recent research on the effects of leveling on student achievement and outcomes, including research on public schools in the United States and abroad.
- **Section II** suggests strategies for reducing the negative effects of leveling, including strategies to provide more equitable instruction within tracked classes and strategies to delevel course assignments.

KEY FINDINGS

- **Overall, research on the effect of tracking on student achievement presents mixed results.** Opponents of tracking cite research which suggests that detracking can improve the academic achievement of low-achieving students without negatively affecting high-achieving students. Supporters of tracking cite research that suggests that overall achievement is lower in detracked schools and that detracking can harm high-achieving students in high-poverty, urban school districts. However, this research often does not control for socioeconomic factors which may impact school achievement. A study of students in Wake County, North Carolina, suggests that grouping with higher achieving peers is beneficial to low- and average-achieving students, while high-achieving students benefit from being grouped with slightly lower-achieving peers.

- **Detracking may have negative effects for high-achieving students when it results in a decrease in instructional rigor, but a challenging curriculum within heterogeneous ability groups can benefit high-achieving students.** In schools where detracking negatively affects high-achieving students, curricular standards are often compromised to accommodate low-achieving students. Schools that have successfully detracked courses, such as South Side High School in New York and Interlake High School in Washington, have ensured that curricular standards were not compromised in the process. Both of these schools structure their course offerings around the IB program, which includes a standardized, rigorous curriculum. As a result, both schools have increased the number of students taking and passing AP and IB tests. Stamford Public Schools in Connecticut recently developed a uniform curriculum in conjunction with its detracking initiative.
Successful detracking initiatives also include support for struggling students. Successful schools differentiate instruction and offer additional support for low-achieving students outside the regular classroom. Interlake High School’s support program focuses on pre-teaching course content to ensure that students are prepared for content in their core classes. South Side High School also offered substantial professional development using the lesson study model to ensure that teachers were able to differentiate instruction within detracked classrooms.

School districts often begin detracking in earlier grades and follow cohorts of students as they progress to higher grades. This ensures that all students enrolled in detracked courses are prepared for a rigorous curriculum. For example, Rockville Centre Union Free School District began its detracking process by expanding a Grade 4 enrichment program for gifted students to all students. The district then progressively detracked middle school mathematics courses so that all students completed an accelerated curriculum, and it began detracking high school courses when the first cohort of students to complete the detracked middle school curriculum reached Grade 9.
SECTION I: IMPACTS OF COURSE TRACKING

This section reviews academic literature on ability and achievement course tracking. More specifically, this section focuses on research published within the past ten years, primarily in the United States. However, this report also discusses research on equity and achievement related to tracking in other countries. This section begins with an overview of course tracking and later discusses research on the impacts of course tracking on students assigned to low-, middle-, and high-achieving tracks.

OVERVIEW

Tracking refers to assigning students to courses based at least in part on their prior academic achievement or perceived ability, including course assignments with an element of student choice. Tracking is distinct from curriculum differentiation, which refers to grouping students, sometimes within the same classroom, for instructional activities. Historically, high schools in the United States separated students into vocational or college tracks based on IQ scores. However, this form of tracking was largely eliminated in the 1960s and 1970s due to equity concerns, and was replaced with the assignment of students to different course tracks for individual subjects based on their prior academic performance in each subject. Tracking structures vary between schools and, in order to understand tracking across a wide spectrum, we may use a four-dimension classification of tracking developed by Aage Sorensen in 1970. This system classifies tracking systems based on:

- **Inclusiveness**: Inclusiveness refers to the degree to which a school provides as many students as possible with the best chances for later success in education. Researchers typically measure inclusiveness by the proportion of all students in the school in the most advanced track, sometimes controlling for the pre-existing abilities of students.

- **Selectivity**: Selectivity refers to the degree to which teachers and administrators intend to produce a homogeneous learning environment through tracking. Selectivity reflects the number of course tracks available and the degree to which formal assignment criteria influence track placements.

- **Electivity**: Electivity refers to the degree of student choice in track assignments. Electivity is closely related to inclusiveness, as well as to the degree of student mobility between tracks over time.

- **Scope**: Scope refers to the degree to which individual students attend classes with the same group of peers over time.

1 Watanabe, M. “‘Some People Think This School Is Tracked and Some People Don’t’: Using Inquiry Groups to Unpack Teachers’ Perspectives on Detracking.” *Theory into Practice*, 45:1, January 1, 2006. pp. 26–27. Accessed via Jstor

Research on the overall impact of ability or achievement tracking on student achievement presents mixed findings. This is due, in part, to the frame of reference on which we view achievement tracking – examining all students versus subgroups of students. A 2009 working paper from the Wisconsin Center for Educational Research explains that the overall achievement in schools with tracking may remain similar or high compared to schools without tracking, but this may be due to offsetting gains of high track students to the losses for low track students.\(^3\) Overall achievement can be strong, yet mask an achievement gap.

As students’ placements in tracks often coincide with socioeconomic backgrounds, inequality in coursework can further exacerbate achievement gaps and social inequality. Supporters of detracking claim that it promotes educational equity and gives all students the chance to engage with a rigorous curriculum. Those detracking advocates cite research that suggests that detracking can be beneficial for low-achieving students without harming their higher-achieving peers.\(^4\)

However, opponents of detracking argue that it promotes a standardized curriculum that is too challenging for low-achieving students but fails to engage their higher-achieving peers. They cite studies that suggest that overall achievement is lower in detracked schools and that the performance of high-achieving students suffers when they are placed in heterogeneously grouped classrooms.\(^5\) At the same time, opponents of detracking claim that lower-achieving students are unprepared to benefit from a more rigorous curriculum. For example, a 2009 study prepared by the Fordham Institute, a politically conservative education think tank, finds that detracked middle schools underperformed relative to schools that practiced achievement tracking. This study, relying on a survey of 128 middle schools in Massachusetts, found no significant difference in achievement on statewide standardized tests of English language arts (ELA) proficiency between students attending middle schools with one ELA track and students attending middle schools with two or more ELA tracks.\(^6\) The number of mathematics tracks offered in a middle school had a significant impact on student achievement, as shown in Figure 1.1 on the next page.

Figure 1.1: Mathematics Achievement by Number of Tracks

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3+</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Advanced</td>
<td>15.8%</td>
<td>18.6%</td>
<td>26.6%</td>
</tr>
<tr>
<td>% Proficient</td>
<td>29.3%</td>
<td>31.9%</td>
<td>34.5%</td>
</tr>
<tr>
<td>% Needs Improvement</td>
<td>28.8%</td>
<td>28.7%</td>
<td>24.1%</td>
</tr>
<tr>
<td>% Failing</td>
<td>26.2%</td>
<td>20.7%</td>
<td>14.8%</td>
</tr>
</tbody>
</table>

Source: Thomas B. Fordham Institute

However, it should be noted that, although Figure 1.1 appears to show a negative correlation between tracking and mathematics achievement, the Fordham Institute’s study did not control for other factors that impact student achievement, such as socioeconomic status and poverty level. Detracked schools in the sample were more likely to be located in urban or rural areas than tracked schools. This may indicate that administrators in high-poverty urban schools are more likely to detrack their courses due to a belief that tracking is particularly harmful to low-income students. Nationally, schools serving primarily low-income students are more likely to embrace detracking, while attempts to detrack schools in affluent areas often meet with organized resistance from parents. Therefore, the apparent differences in achievement observed in this study may actually be due to differences in the socioeconomic conditions of the schools surveyed rather than the impact of detracking. A review of this study published in *The Teachers College Record* suggests that controlling for student lunch status would eliminate the apparent correlation between tracking and student test scores.

A 2005 working paper prepared by Caroline Hoxby and Gretchen Weingarth at Harvard University examined the impact of peer effects on academic achievement in the Wake County, North Carolina public school system. Wake County Public Schools adopted a racial desegregation plan that reassigned students to schools based partially on race until 2000 and on family income after 2000. This led to students being assigned to classrooms with

7 Chart contents taken from: Ibid., p. 23.
8 Ibid., pp. 18–19, 22.
varying average peer ability levels in a quasi-random process, which allowed Hoxby and Weingarth to examine peer effects independently of school and individual student factors. To estimate the impact of peer effects on student achievement, Hoxby and Weingarth compared statewide reading and mathematics test scores for students in Grades 3-8 to their peers in the same classroom for the school years from 1994-1995 through 2002-2003.10

Overall, Hoxby and Weingarth’s research supports two related models of peer effects, the Boutique Model and the Focus Model. The Boutique Model suggests that students benefit from being assigned with classmates with similar characteristics, because homogeneity allows students to learn in an environment that more closely matches their individual characteristics and learning styles. Similarly, the Focus Model suggests that a homogenous peer group is beneficial for learning because heterogeneous groups make it difficult to design tasks that meet all students’ needs.11

However, Hoxby and Weingarth do not recommend homogeneous grouping of students by achievement or ability. Their findings suggest that most students will benefit from learning alongside slightly higher-achieving peers and that high-achieving students benefit from interacting with slightly lower-achieving peers. They suggest that classroom assignments should “maintain continuity of types,” so that students are not grouped entirely with students of the same achievement level or isolated in a classroom composed primarily of peers with a substantially higher or lower achievement level.12

IMPACTS OF STUDENT TRACKING

In this subsection, we discuss the impact of student tracking, specifically on students in lower, average (or general), and high tracks.

LOWER TRACKS

A variety of research suggests that ability tracking has negative impacts on educational equity. Students assigned to lower tracks at the high school level often experience a less rigorous curriculum than peers in higher tracks. Also, lower-track students may not be able to complete the prerequisite courses necessary to take higher-level courses later in high school. Research suggests that students from historically underserved ethnic minority groups and students with low socioeconomic status are more likely to be assigned to low-level course tracks in high school, contributing to disparities in educational outcomes for

11 Ibid., pp. 6-7.

12 Ibid., pp. 6–7, 24, 33–34.
these groups. A report by the National Research Council’s Committee on Appropriate Test Use recommends eliminating low-level tracks that do not provide a rigorous curriculum.

Research suggests that course tracking assignments may be influenced by subjective judgments, particularly when schools do not have clearly established criteria for course assignments. Course assignments that rely on teachers’ estimates of students’ motivation, interest, or behavior may not appropriately group students by ability level. In these cases, decision makers have limited information on students’ academic histories and strategies to objectively measure motivation, interest, and behavior. Even when test scores are used to place students in course levels, their use may be inappropriate. In a 1999 review of appropriate testing practices, the National Academy of Sciences warns against using norm-referenced standardized tests designed to rank students in tracking decisions.

Research also suggests that low-level course tracks are often slower-paced and cover less material than more advanced tracks. A survey of high school and college English instructors, discussed in a 2006 article for *The English Journal*, asked high school teachers to report whether they taught 73 specific writing skills. Teachers were also asked whether they taught courses for primarily college-bound or non-college-bound students. Figure 1.2 shows the largest differences between these two tracks. In general, teachers of college-bound students tend to teach skills dealing with different purposes of writing, such as writing literary or media analysis or evaluating source materials critically, while teachers of non-college-bound students were more likely to teach basic grammar skills.

<table>
<thead>
<tr>
<th>Skill</th>
<th>Percent Taught, Primarily College-Bound Classes</th>
<th>Percent Taught, Primarily Non-College-Bound Courses</th>
<th>Difference (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Writing literary or media analysis</td>
<td>92</td>
<td>69</td>
<td>23</td>
</tr>
<tr>
<td>Using rhetorically effective subordination, coordination, and parallelism.</td>
<td>83</td>
<td>64</td>
<td>19</td>
</tr>
<tr>
<td>Evaluating source materials critically</td>
<td>81</td>
<td>63</td>
<td>18</td>
</tr>
<tr>
<td>Developing one’s own voice as a writer</td>
<td>85</td>
<td>68</td>
<td>17</td>
</tr>
<tr>
<td>Evaluating and critiquing logical proofs and supporting materials in their own argumentative papers</td>
<td>69</td>
<td>53</td>
<td>16</td>
</tr>
<tr>
<td>Changing focus of paper depending on audience addressed</td>
<td>84</td>
<td>71</td>
<td>13</td>
</tr>
</tbody>
</table>

17. Ibid., p. 104.
<table>
<thead>
<tr>
<th>Skill</th>
<th>Percent Taught, Primarily College-Bound Classes</th>
<th>Percent Taught, Primarily Non-College-Bound Courses</th>
<th>Difference (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developing logical arguments and supporting them with valid evidence</td>
<td>98</td>
<td>85</td>
<td>13</td>
</tr>
<tr>
<td>Collaborating with peers in reviews of drafts</td>
<td>93</td>
<td>81</td>
<td>12</td>
</tr>
<tr>
<td>Writing a research paper</td>
<td>75</td>
<td>64</td>
<td>11</td>
</tr>
<tr>
<td>Interpreting literary texts</td>
<td>93</td>
<td>83</td>
<td>10</td>
</tr>
<tr>
<td>Writing Skills Prevalent in Non-College Bound Classes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Writing a process or ‘how-to’ paper</td>
<td>41</td>
<td>75</td>
<td>34</td>
</tr>
<tr>
<td>Forming tenses of regular and irregular verbs</td>
<td>61</td>
<td>85</td>
<td>24</td>
</tr>
<tr>
<td>Punctuating end of sentence</td>
<td>68</td>
<td>90</td>
<td>22</td>
</tr>
<tr>
<td>Writing a paper explaining a technical process</td>
<td>24</td>
<td>42</td>
<td>18</td>
</tr>
<tr>
<td>Forming compound tenses</td>
<td>50</td>
<td>68</td>
<td>18</td>
</tr>
<tr>
<td>Punctuating to indicate possession</td>
<td>77</td>
<td>94</td>
<td>17</td>
</tr>
<tr>
<td>Forming modifiers</td>
<td>61</td>
<td>77</td>
<td>16</td>
</tr>
<tr>
<td>Punctuating items in a series</td>
<td>76</td>
<td>88</td>
<td>12</td>
</tr>
<tr>
<td>Using the proper form of possessive pronouns</td>
<td>73</td>
<td>85</td>
<td>12</td>
</tr>
<tr>
<td>Beginning a paragraph in the appropriate place</td>
<td>84</td>
<td>95</td>
<td>11</td>
</tr>
<tr>
<td>Using the appropriate case of a pronoun</td>
<td>74</td>
<td>85</td>
<td>11</td>
</tr>
</tbody>
</table>

Source: The English Journal 19

This survey also asked teachers to report the types of reading skills that they taught – 64 different reading skills in total. Figure 1.3 shows the largest differences in reading skills taught between the two tracks. As with writing skills, teachers of non-college-bound students were more likely to emphasize practical skills as opposed to higher level skills that would prepare students for college coursework. Teachers of college-bound students, in the higher track, were more likely to emphasize textual analysis and critical evaluation of texts.

Figure 1.3: Reading Skills Emphasized in College and Non-College Track Courses

<table>
<thead>
<tr>
<th>Skill</th>
<th>Percent Taught, Primarily College-Bound Classes</th>
<th>Percent Taught, Primarily Non-College-Bound Courses</th>
<th>Difference (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reading Skills Prevalent in College-Bound Classes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recognizing and understanding the use of literary devices: satire</td>
<td>93</td>
<td>46</td>
<td>47</td>
</tr>
<tr>
<td>Analyzing a text to understand how writing style conveys or shapes meaning</td>
<td>81</td>
<td>39</td>
<td>42</td>
</tr>
<tr>
<td>Judging a text by using different critical lenses or stances</td>
<td>55</td>
<td>19</td>
<td>36</td>
</tr>
<tr>
<td>Analyzing a text to identify an author’s unstated assumptions</td>
<td>85</td>
<td>49</td>
<td>36</td>
</tr>
<tr>
<td>Judging a text by rating it against generally recognized standards of quality or excellence</td>
<td>64</td>
<td>28</td>
<td>36</td>
</tr>
<tr>
<td>Evaluating information in a text for completeness</td>
<td>66</td>
<td>35</td>
<td>31</td>
</tr>
<tr>
<td>Recognizing in a text the types of evidence used</td>
<td>60</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Recognizing in a text the sources of information used</td>
<td>75</td>
<td>45</td>
<td>30</td>
</tr>
<tr>
<td>Analyzing a text to identify confusing, ambiguous, or vague language</td>
<td>88</td>
<td>58</td>
<td>30</td>
</tr>
</tbody>
</table>

19 Chart contents taken directly from: Ibid., pp. 84–85.
In addition to receiving a less rigorous curriculum, some research suggests that students in lower tracks tend to be taught by less experienced teachers. Teachers often prefer to teach advanced tracks, and schools could use class assignments to informally reward high-performing teachers with advanced students or indirectly penalize low-performing teachers with low-track students. A 1990 report on equity in mathematics and science education prepared for the RAND Corporation found that teachers of lower-track students were, on average, less qualified than teachers of higher-track students.21

Being placed in a low-achieving track may also have psychological effects that depress students’ performance. Students tend to take the labels associated with different tracks as determinations of their overall academic abilities, leading students placed in low tracks to underrate their own ability.22 Several studies of students in low academic tracks have found that they are able to perform mathematical calculations in real-world settings, such as buying groceries or tracking a diet, that they could not do in a classroom setting. This may suggest that students underestimate their own abilities as a result of being placed in a low-performing class, with negative effects on their academic achievement.23

Hoxby and Weingarth found that, on average, higher performing peers improve the academic achievement of individual students. An increase of one percentage point on the

20 Chart contents taken directly from Ibid., pp. 86–87.
average test score of a class has been associated with a raise in an individual student’s score by 0.35 percentage points. However, peer effects vary depending on a student’s initial achievement. Students in the lowest decile of initial achievement benefited more from learning alongside peers in the second and third deciles than peers in higher deciles. For these students, a 10 percent increase in the number of classmates scoring at the 15th percentile generated 4.5 more percentage points of improvement on test scores than the same increase in the number of classmates scoring at the 85th percentile.²⁴

A 2014 research brief prepared by the University of Chicago Consortium on Chicago School Research examines the impact of detracking on mathematics achievement in Chicago Public Schools. In 1997, Chicago Public Schools mandated that all students take Algebra 1 in Grade 9. As a result, remedial Grade 9 mathematics classes were eliminated, and students were more likely to be placed in Algebra 1 classes with a heterogeneous mixture of peers based on prior mathematics test scores. However in 2003, Chicago Public Schools implemented a double-dose policy that required students entering Grade 9 with test scores below the national average to attend an additional period of mathematics instruction. These students were also grouped together for their regular Algebra 1 class, meaning that students became less likely to be grouped with a heterogeneous mixture of peers, although all students received the same mathematics curriculum.

The University of Chicago Consortium on Chicago School Research reviewed test data from the period from 1998-2003 when students attended classes with heterogeneous peer groups. For students with low initial mathematics achievement, there was a slight positive relationship between the average initial achievement of their peers, suggesting that heterogeneous grouping was beneficial to low-achieving students. Overall scores for low-achieving students improved substantially after the double-dose policy was implemented, although this was likely due in part to the additional mathematics instruction, along with professional development that may have improved the quality of instruction.²⁵

AVERAGE OR GENERAL TRACKS

Peer effects may be less substantial for students in the average range of achievement than for their high- or low-achieving peers. For students in the 30th through 70th percentile of initial performance, Hoxby and Weingarth found “negligible” positive impacts on test scores from being assigned to classes with higher- versus lower-performing classmates.²⁶

However, tracking appears to have negative effects on the achievement of average students placed into less rigorous tracks due to differences in curriculum and instruction between tracks. Students in lower tracks may be more likely to drop out of school than they would be in a detracked school. A study of 16,081 students participating in the Education

Longitudinal Study of 2002 Grade 10 cohort finds that tracking increases the likelihood of dropping out of high school. In particular, students in the bottom quartile of achievement within a college preparatory track were significantly less likely to drop out of high school than students in the top quartile of achievement within a general track. In 2012, high school graduates between ages 25 and 34 earned a median income of $30,000, compared to $22,900 for high school dropouts in the same age range. This suggests that ability tracking can have harmful long-term consequences on the economic well-being of some students placed in non-college preparatory tracks.

In addition, research suggests that average and low-achieving students placed in high tracks benefit from an enriched curriculum. Several studies reviewed in a 2009 briefing by the National Education Policy Center (NEPC) found that students in high-track classes benefit from increased instructional time and a curriculum that teaches higher-level thinking skills. In addition, students with average or low prior achievement that are also assigned to accelerated tracks, either through detracking or inappropriate assignment procedures, tend to demonstrate increased achievement.

The lack of an enriched curriculum and instructional standards may reduce the amount of effort that average- or general-track students put forth in school. A study using data from the National Education Longitudinal Survey of 1988 finds that tracking has a notable impact on the amount of effort students put forth in school. This study developed a scale consisting of teacher’s reports of their Grade 10 students’ overall level of effort, classroom attentiveness, and homework completion, which was compared to the students’ track assignment with tracks reported as Honors, Academic, General, or Vocational. Across English, mathematics, science, and history classes, teachers reported statistically significant differences in the level of effort put forth by students in different tracks. The authors also found that these differences are partially explained by students’ prior academic achievement and effort in Grade 8, and by changes in students’ beliefs about themselves and self-reported intellectual stimulation.

HIGHER TRACKS

Finally, we discuss the impact of tracking in students in the highest tracks. Opponents of ability tracking argue that heterogeneous classroom grouping has a negative impact on the performance of high-achieving students due to the social effects of grouping high-achieving students with their low-achieving peers, as well as accountability-based incentives for

teachers to focus instruction on low-achieving students.31 Similarly, some studies indicate that detracking results in a decrease in test scores for high-achieving students.32

Detracking may be particularly harmful for high-achieving minority students in large urban school districts. These districts can face substantial challenges in effectively implementing detracking, and may be unable to provide rigorous instruction within heterogeneous classes. In addition, students in low-income households may lack the family and social support needed to succeed in the absence of a rigorous curriculum.33

The University of Chicago Consortium on Chicago School Research’s study of detracking in Chicago Public Schools found that average test scores for high-achieving students declined substantially during the period when students attended Algebra 1 classes with heterogeneous peer groups. This decline was large enough to result in an overall decline in achievement for the district, even though scores for low-achieving students improved slightly. However, course grades for high-achieving students declined after Chicago Public Schools implemented its skills-based sorting policy in 2003. The precise cause of this decline is unknown and may be a result of teachers increasing the rigor of their instructional practices and grading policies, or it may be due to homogeneous grouping causing some former “high-skill” students to become the lowest-performing students in their class resulting in frustration and diminished effort.34

\textbf{School districts may avoid negative impacts of detracking on high-achieving students by ensuring that instruction in detracked classes meets the same standards of rigor and engagement as high-tracked classes.} The three school districts profiled in Section II of this report have detracked classes in a way that improves outcomes for all students. Rockville Centre Union Free School District and Interlake High School both align their detracked classes with the standards of the International Baccalaureate (IB) program, which insures a uniform, rigorous curriculum.

Peer effects alone do not appear to negatively impact high-performing students in detracked classrooms. Hoxby and Weingarth’s study of school reassignment in Wake County, North Carolina, suggests that high-performing students benefit from working with both high-performing and average peers. Wake County students starting in the top decile of initial performance on standardized tests benefited from being assigned additional classmates in the 50th-90th percentiles. Scores for students in the ninth decile of initial performance exhibited a similar trend.35

\begin{itemize}
\item 33 Gamoran, Op. cit., p. 11.
\item 34 Nomi and Allensworth, Op. cit., pp. 5–6.
\item 35 Hoxby and Weingarth, Op. cit., p. 23.
\end{itemize}
ABILITY TRACKING OUTSIDE THE UNITED STATES

Student tracking also occurs in education systems outside the United States. Research indicates that educational systems with greater degrees of ability or achievement tracking may have greater inequality across educational outcomes. A review of standardized test scores across 18 countries participating in the Progress in International Reading Literacy Study (PIRLS) and Program for International Student Assessment (PISA) assessments found that the majority of countries that implemented achievement tracking for students under age 15 experienced an increased in inequality among test scores between students in the equivalent of Grade 4 and among 15-year-olds. In contrast, the majority of countries without achievement tracking experienced a decrease in inequality.\(^{36}\) For example, in New Zealand, where achievement tracking is common, the gap between the highest and lowest performing students was one of the largest among countries surveyed, even though New Zealand’s PISA scores are typically higher than average.\(^{37}\)

A study that interviewed administrators in 17 high schools in Christchurch, New Zealand, found that administrators identified both advantages and disadvantages of ability grouping. Administrators claimed that ability grouping made it easier to target instruction and resources to meet the needs of individual students. In addition, administrators reported that ability grouping allowed teachers to provide more challenging instruction or extension activities to high-achieving students, as well as additional support for students with special needs. However, administrators also reported that teachers tended not to differentiate instruction within classes they believed to be homogenous, and students were sometimes mistakenly placed due to inaccurate data or differing abilities across curriculum areas. In addition, students placed in low-achieving tracks tended to exhibit behavior problems and poor focus, while students placed in high-achieving tracks tended to develop “inflated ideas of their ability level.”\(^{38}\)

A 2004 literature review compared educational outcomes for primary-level students in the United States to students in Japan, where tracking is rare. This review suggests that achievement tracking in the United States causes students in lower tracks to experience diminished expectations from teachers, and often a less rigorous curriculum. Students in lower tracks may lose opportunities to access social and cultural capital through friendships with more advantaged students in higher tracks, and may engage in deviant behavior as a reaction to persistent school failure. In contrast, Japanese elementary school students exhibit substantially higher academic performance than their counterparts in the United States. Japanese teachers tend to assume that all students have the same innate ability, and

\(^{38}\) Ibid., p. 93.
that differences in performance are due primarily to effort. As a result, Japanese teachers tend to present the same curriculum and maintain the same expectations of all students.\footnote{Ansalone, G. “Educational Opportunity and Access to Knowledge: Tracking in the US and Japan.” \textit{Race, Gender & Class}, 11:3, January 1, 2004. pp. 143–148. Accessed via Jstor.}

In addition to research comparing educational systems in different countries, nationwide detracking initiatives suggest the potential of detracking to reduce achievement gaps and improve overall achievement. In 1985, Finland detracked courses for students between ages 7 and 16, resulting in a reduction in achievement gaps and an increase in overall achievement. Finland’s PISA scores are consistently higher than average, and the gap between the lowest- and highest-performing students is consistently lower than average.\footnote{Burris, Welner, and Bezoz, Op. cit., pp. 12–13.}
SECTION II: STRATEGIES TO REDUCE THE IMPACT OF COURSE TRACKING

This section addresses strategies that school districts can take to reduce the negative impacts of ability or achievement tracking. This section begins with a brief discussion of strategies with the potential to increase equity and achievement within a tracked system. It then discusses strategies that districts can adopt to detrack courses or reduce the number of course tracks.

STRATEGIES TO MITIGATE NEGATIVE IMPACTS OF TRACKING

High schools may consider replacing course assignments based on prior achievement with a greater degree of student choice. A study of high school curriculum guides in North Carolina finds that many high schools claim to offer open enrollment systems where students may select a track in which to enroll. However, choice in these systems is often limited by eligibility or prerequisite requirements for upper-track classes, which effectively prevent lower-track students from enrolling in higher-track courses.41 Schools with tracking systems may consider reducing eligibility requirements for high-level tracks in order to enable students to move to higher tracks.

However, research reviewed in a 2009 research brief on detracking prepared by the Wisconsin Center for Education Research (WCER) suggests that student-selected track assignments tend to reinforce the negative impacts of achievement tracking. Students from underrepresented minority groups may tend to self-select into lower tracks due to differential access to information and a desire for classes that value their cultural background.42 Therefore, detracking may be necessary to improve educational equity.

The WCER research brief also reviews evidence from other countries that corroborates the idea that raising standards and incentives for students in low tracks can improve achievement and reduce inequality. In Israel and Taiwan, high-stakes tests for high school students led to improved achievement for students in low mathematics tracks, due to increased incentives for these students. Likewise, educational reforms in Australia and Scotland that raised curricular standards for lower tracks reduced the negative impacts of tracking on low achieving students. Catholic schools in the United States offer rigorous instruction in low-track classes, and exhibit smaller achievement gaps than public schools.43

To promote instructional rigor across skill levels, some school districts in the United States group students by skill level but provide the same curriculum to each skill group. As discussed in Section I, Chicago Public Schools adopted a skill-based sorting program for high school mathematics instruction in response to a curricular mandate to offer Algebra 1 to all

43 Ibid., pp. 13–14.
Grade 9 students. This program required low-achieving students to take an additional support class in addition to their regular algebra class, and grouped support class students into the same, regular algebra class.\footnote{Nomi and Allensworth, Op. cit., pp. 3–4.}

DETRACKING STRATEGIES

School districts considering detracking may begin by determining the impacts of ability tracking on their students. Student data inform decision makers of the extent of tracking in their schools, and provide evidence of these impacts for discussions with stakeholders. A 2008 article in the journal *American Secondary Education* recommends that school leaders gather data showing the prevalence of:

- Students placed in lower-level tracks than their grades or test scores would indicate,
- Under-representation of minority groups or other categories of students in honors or advanced-track courses,
- Under-representation of female students in advanced-track math and science courses, and

Data gathered on tracking can be used to inform detracking programs in individual school districts. A 2009 policy briefing by the National Education Policy Center (NEPC) recommends that school districts begin by phasing out the lowest level track, while allowing open enrollment. This briefing provides the following policy recommendations:

- **Phase out low-track classes where they begin:** In sequential content areas such as mathematics and science, schools should phase out tracking beginning with the point where tracking begins and follow a cohort of students as they move to the next grade level. This ensures that students are prepared for more challenging coursework.
- **Ensure rigor:** Schools should ensure that curricula in newly detracked classes are not made less rigorous as low-track classes are phased out. Heterogeneous classes should differentiate instruction strategies while setting high learning goals for all students.
- **Continue detracking until all stratification is eliminated:** Students benefit most from a single rigorous level of instruction. Detracking that only removes the lowest track runs the risk of replicating educational disadvantages in the lowest remaining track.
- **Ensure that the high-track curriculum becomes the default curriculum:** Teachers should avoid simplifying the high-track curriculum during the detracking process and differentiate instruction to ensure that all students benefit from the high-track
curriculum. Heterogeneous grouping is most effective when combined with a rigorous curriculum for all students.

- **Ensure heterogeneous grouping in detracked classes**: Detracking has the greatest benefit when classes contain a mixture of achievement levels. Counselors and administrators should avoid de facto tracking caused by scheduling issues related non-core classes, such as special education or ELL classes.

- **Provide students with the support needed to succeed in challenging classes**: Schools should provide in-class and out-of-class support to ensure that all students, including those with special needs or learning disabilities as well as those with varying levels of academic preparation and parental support, can access a rigorous curriculum. Appropriate supports may include accommodations for students with learning disabilities and varied instructional methods or modalities.

- **Schedule any supplemental instruction separately from primary instruction**: To provide supplemental instruction to students in need of additional support without separating them from heterogeneously grouped classes. When students are scheduled into classes that combine primary and supplemental instruction, these classes often become de facto low-track classes.46

SUPPORT FOR TEACHERS

Detracking may require shifts in teachers’ instructional methods. Advocates of mixed-ability grouping suggest that teachers differentiate instruction within mixed-ability classes to meet the educational needs of all students. Differentiated instruction classrooms often group students by ability within mixed-ability classrooms. These groups are fluid and change over time as individual students develop. However, many teachers report that differentiated instruction is difficult to implement in practice.47 A survey of teachers cited in a 2010 Education Next article finds that around 80 percent of teachers find differentiated instruction difficult.48

Research suggests that teachers in detracked classes who do not receive sufficient support may have difficulty supporting students with varying levels of prior academic achievement. Some studies suggest that teachers in these situations tend to decrease the rigor of their instruction, which may render detracking ineffective, particularly for high performing students.49

Schools should consider expanding their professional development opportunities to assist teachers in the transition to heterogeneous classes. The NEPC recommends a long-term commitment to sustained professional development in support of detracking. This professional development should be collegial in nature and provide teachers with

opportunities to practice new differentiation strategies. Citing the experience of Rockville Centre Union Free School District, profiled below, the NEPC recommends the lesson study model. This model allows teachers to develop and practice instructional changes in a supportive, non-threatening environment. 50

ENSURING STAKEHOLDER SUPPORT

Although research has demonstrated academic benefits to detracking courses, parents often oppose course detracking. For example, detracking in Stamford Public Schools, profiled below, resulted in vocal opposition from parents. Opposition may be concentrated among parents of high-ability students, who fear that heterogeneous ability grouping will deprive their child of academic and social advantages associated with being placed in high-level course tracks. In addition, teachers may feel unprepared to teach heterogeneous groups of students in the same class. 51

A 2006 article in the journal *Theory into Practice* suggests that schools wishing to detrack courses begin by informing stakeholders of the research base supporting detracking. However, this may not be enough to overcome parental opposition based on a belief that low-achieving students will be disruptive or that detracking will expose high-track students to lower-performing peers that exhibit undesirable cultural characteristics such as drug use or an anti-academic orientation. 52 Based on previous research and case studies of detracking initiatives at two school districts, this article suggests the strategies listed in Figure 2.1 to build support among parents and the broader community for detracking initiatives.

Figure 2.1: Strategies to Build Support for Detracking

<table>
<thead>
<tr>
<th>Actor</th>
<th>Strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>School Boards</td>
<td>Commit to the principles underlying the reforms.</td>
</tr>
<tr>
<td></td>
<td>Set clear expectations for change, including detracking.</td>
</tr>
<tr>
<td></td>
<td>Develop a comprehensive reform plan and guard against losing sight of its goals.</td>
</tr>
<tr>
<td></td>
<td>Engage the community in participation and discussion designed to ensure that all constituents have an effective political voice.</td>
</tr>
<tr>
<td></td>
<td>Foster constructive public engagement by establishing ongoing community forums on excellence and equity in the schools.</td>
</tr>
<tr>
<td></td>
<td>Hold de-tracking reform to a rigorous but reasonable standard.</td>
</tr>
<tr>
<td>District Administrators</td>
<td>Emphasize the educational high ground on which de-tracking rests: All children can learn, and all children should receive a high-quality education.</td>
</tr>
<tr>
<td></td>
<td>Ensure that each school has the support necessary for de-tracking reforms to succeed.</td>
</tr>
<tr>
<td></td>
<td>Move beyond technically minded professional development.</td>
</tr>
<tr>
<td></td>
<td>Provide incentives for teachers working successfully with heterogeneous classes.</td>
</tr>
<tr>
<td></td>
<td>Replace departing faculty with a reform minded, diverse group of teachers.</td>
</tr>
<tr>
<td></td>
<td>Work systematically with local media.</td>
</tr>
</tbody>
</table>

52 Ibid., pp. 91–92.
ACTORS

<table>
<thead>
<tr>
<th>STRATEGIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Augment the public relations office with an office of parent and community relations with responsibility for improving parent involvement from the district’s low-income and minority neighborhoods.</td>
</tr>
<tr>
<td>Develop faculty study groups</td>
</tr>
<tr>
<td>Create a diverse, multicultural parent–faculty task force to monitor school practices for academic excellence and equity.</td>
</tr>
<tr>
<td>Disseminate relevant information about the reform.</td>
</tr>
<tr>
<td>Ensure that parent advisory groups reflect all of the parents in each school.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individual Schools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create faculty study groups</td>
</tr>
<tr>
<td>Create a diverse, multicultural parent–faculty task force to monitor school practices for academic excellence and equity.</td>
</tr>
<tr>
<td>Disseminate relevant information about the reform.</td>
</tr>
<tr>
<td>Ensure that parent advisory groups reflect all of the parents in each school.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individual High Schools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create smaller, more personalized learning environments.</td>
</tr>
<tr>
<td>Phase out all low-level courses.</td>
</tr>
<tr>
<td>Make ninth-grade enrollment in college preparatory Algebra 1 a minimal benchmark for all students.</td>
</tr>
<tr>
<td>Provide additional academic support for students not prepared for rigorous academics.</td>
</tr>
<tr>
<td>Provide ample opportunities for academic enrichment.</td>
</tr>
<tr>
<td>Provide challenging academic support and college counseling.</td>
</tr>
</tbody>
</table>

Source: *Theory into Practice*[^53]

PROFILES OF DETRACKED SCHOOLS

In the remainder of this section, Hanover Research profiles three detracked school districts: Rockville Centre Union Free School District in New York, Bellevue School District in Washington, and Stamford Public Schools in Connecticut. Both Rockville Centre Union Free School District and Interlake High School in Washington provide examples of successful detracking which led to substantially improved student achievement. Rockville Centre Union Free School District is frequently cited in the academic literature as a model of successful detracking. Stamford Public Schools provides a more recent example of a detracking initiative that has faced challenges ensuring instructional rigor and generating support from parents.

ROCKVILLE CENTRE UNION FREE SCHOOL DISTRICT

Rockville Centre Union Free School District (UFSD), located on Long Island, implemented a detracking plan for middle and high school students beginning in 1989 due to a determination that the overrepresentation of low income and minority students in less rigorous tracks contributed to the district’s achievement gaps. In the late 1980s, Rockville Centre UFSD split students into three main tracks at the high school level, a Non-Regents track with a less challenging curriculum for students who were not expected to attend college, a Regents Track which prepared students to meet the requirements for New York’s Regents college preparatory diploma, and a Regents with Honors Track which prepared students for Advanced Placement (AP) or International Baccalaureate (IB) courses. Students

in the Regents and Non-Regents Tracks were unable to complete the prerequisite courses required for AP and IB courses.54

South Side High School, the only high school in Rockville Centre UFSD, assigned course tracks based on students’ performance in middle school. However, Rockville Centre UFSD also tracked students at the middle school, meaning that high school tracks were ultimately dependent on performance in Grade 5. Every year, the 50 Grade 6 students with the highest mathematics performance, measured by grades, standardized tests, and teacher recommendations, were assigned to an accelerated mathematics curriculum that would lead to AP calculus in Grade 12.55 Figure 2.2 shows the timeline for Rockville Centre UFSD’s detracking process.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Figure22.png}
\caption{Rockville Centre UFSD Detracking Timeline}
\end{figure}

55 Ibid.
Detracking Middle and Elementary Schools

Rockville Centre UFSD began detracking by expanding a Grade 4 gifted and talented curriculum to offer all students the enriched curriculum, referred to as Success in Technology, Enrichment, Library, Literacy, and Research (STELLAR). STELLAR consists of whole-class and small group activities that encourage students to study areas of interest in greater depth. Each elementary school in the district has a STELLAR teacher who provides enrichment support to classroom teachers.\(^{56}\)

In 1990, Rockville Centre UFSD decreased the number of mathematics and science classes at the middle school level from three to two.\(^{57}\) At the same time, Rockville Centre UFSD eliminated test entrance requirements for its accelerated math and science track at the middle school level, allowing students to self-select into the program. Approximately 50 percent of middle school students selected the accelerated track, which led to Algebra 1 in Grade 8. In 1995, Rockville Centre UFSD began requiring the accelerated track for all middle school students. In 1998, the district began offering a laboratory science course to all Grade 8 students. Although the district had assured teachers that it would return to the tracking system if detracking did not work, the percentage of students passing the statewide Algebra 1 exam increased after detracking.\(^{58}\)

Detracking High Schools

In 1993, Rockville Centre UFSD’s superintendent announced a goal of 75 percent of students graduating with a Regents diploma by 2000, up from 58 percent in 1993. This required the elimination of the Non-Regents track.\(^{59}\) In 1998, when the first cohort of students who had completed the detracked middle school mathematics curriculum moved to the high school, South Side High School replaced the two-track system with a single high-level course for Grade 9 English, social studies, and foreign language course. In the first year of detracking, students were allowed to apply for an honors course and, in 1999, the honors-level course was expanded to all students. In response to a 2000 change in state curriculum standards, South Side High School began offering a single Grade 9 science course.\(^{60}\) Initially, South Side High School maintained two tracks in Grade 9 mathematics to accommodate the International Baccalaureate (IB) program. However, in 2001, South Side High School began offering all Grade 9 students an accelerated mathematics course.\(^{61}\)

In 2003, South Side High School began offering pre-IB English and social studies courses to all Grade 10 students. All students in Grades 11 or 12 were allowed to select IB or Regents

\(^{60}\) Ibid.

level courses. At the same time, South Side High School detracked its Grade 10 mathematics course, followed by its chemistry course in 2006. At this point, core courses were fully detracked through Grade 10, with students able to select AP, IB, and Regents courses in Grades 11-12.

Support for Teachers

Rockville Centre UFSD offers a series of professional development workshops for teachers that focus on analyzing assessment data to identify common errors and develop student-centered instructional strategies. These workshops relied on lesson studies, a collaborative form of professional development developed in Japan. Rockville Centre UFSD also developed a five-year professional development program focused on balanced literacy and differentiated instruction to support teaching heterogeneous classes.

Engaging Parents

Rockville Centre UFSD actively engaged parents in the detracking process. The district superintendent worked closely with Parent-Teacher Association (PTA) leaders to build support for detracking and address parent concerns. The district responded to parent concerns by presenting data on the impact of detracking at PTA and school board meetings. A Curriculum Committee that includes a teacher and parent from each school in the district met with senior administrative leadership on a monthly basis to discuss concerns over the district’s curriculum and share information on curriculum initiatives with the PTA.

Rockville Centre UFSD also accommodated parent concerns in the detracking process. For example, the decision to expand the elementary gifted program rather than eliminating it was made in response to advocacy from the parents of students in the program, and ensured that gifted students would continue to have their educational needs met. In addition, Rockville Centre UFSD implemented additional support for struggling students, including differentiated instruction, alternating support classes, and extra support before school, in response to parent concerns.

Outcomes

After detracking, achievement gaps declined substantially. Within three years of detracking, the percentage of low-income students earning a college-preparatory diploma increased.

62 Ibid.
67 Ibid.
68 Ibid.
from 22 to 71 percent, and 60 percent of all Grade 12 students were enrolled in Advanced Placement Calculus.\(^71\)

A longitudinal study of South Side High School’s detracking process compared test scores and the diplomas earned by students who graduated from the school before and after detracking. This study found a substantial increase in the number of IB examinations taken from 1990 to 2005, along with a smaller increase in the percentage of students earning scores of 4 or above on the IB program’s 7-point scale. Overall, students who graduated after detracking were 70 percent more likely to earn an IB diploma than their predecessors in tracked cohorts. Students with higher initial achievement levels were not significantly less likely to earn a Regents diploma after detracking. Likewise, both high-performing and average students were more likely to earn IB diplomas after detracking, suggesting that detracking did not negatively impact high-performing students.\(^72\)

BELLEVUE SCHOOL DISTRICT

Interlake High School, located in Bellevue, Washington, began detracking in the early 2000s as part of a school reform strategy in response to low student achievement. The reform strategy also included a physical remodeling of the school and efforts to improve school culture. Although the school already had an IB program, most students were enrolled in lower-track courses, and only 16 students graduated with an IB diploma in a typical year.\(^73\)

In order to improve performance, Interlake High School began phasing out its lowest-track courses, while encouraging more students to take AP and IB classes. At the same time, Interlake High School increased the variety of high-level mathematics courses.\(^74\) Interlake High School identifies students receiving free or reduced-price meals who are not already taking at least one AP or IB course and encourages them to do so.\(^75\)

The standardization of the IB curriculum enabled Interlake High School to increase the number of students in advanced classes without decreasing the rigor of these courses. Instead of adapting course expectations for struggling students, Interlake High School offers a separately scheduled support class that pre-teaches content in honors level mathematics courses. Interlake High School determined that pre-teaching would be a more effective method of supporting a high-level curriculum than remediation. Pre-teaching includes previewing the vocabulary, strategies, and critical thinking needed to succeed in upcoming course units to provide students with weaker prior preparation with the vocabulary and

basic skills needed for honors-level mathematics units.

To ensure that all students are able to access a high-track curriculum, Interlake High School offers the Starting Strong program for entering Grade 9 students who struggled in middle school. Interlake High School typically identifies between 25 and 30 students entering Grade 9 whose prior performance indicates that they need additional support during the transition to high school. Two weeks before the start of the school year, five specialized teachers begin working with these students to preview the Grade 9 curriculum in reading, mathematics, and biology. This allows students to enter high school prepared for the curriculum.

In the first year of the Starting Strong program, the performance of participating students reverted after the first quarter of Grade 9. As a result, Interlake High School added an ongoing program in which students meet with their counselor before school. This program focuses on academic strategies such as homework and reviewing course grades online.

Outcomes

Interlake High School’s comprehensive reform strategy has significantly improved overall student achievement. The percentage of students earning passing scores on Washington’s statewide math test increased from 49 percent in 2003 to 73 percent in 2006. In addition, the school’s average scores on the mathematics portion of the SAT were higher than both the state and national average in 2006 and 2007. In addition, the number of students completing IB and AP courses and obtaining passing scores on IB and AP exams has increased substantially since Interlake High School began detracking courses.

STAMFORD PUBLIC SCHOOLS

Stamford Public Schools, located in Stamford, Connecticut, launched a Middle School Transformation initiative during the 2009-2010 school year. This initiative included a reduction in the number of instructional tracks at the middle school level to two (down from four or five), titled College Prep (CP) and Honors. Students participate in a homogeneously grouped academic extension period that provides enrichment activities based on their

76 Ibid.
track. The Middle School Transformation also included the adoption of a standard curriculum for middle school mathematics and science, led by a committee of district and school staff. The detracking portion of the Middle School Transformation was implemented over a three year period as students who were initially assigned to detracked classrooms in Grade 6 moved through middle school.

Before implementing the Middle School Transformation, Stamford Public Schools piloted mixed-ability grouping in a single middle school. Focus groups conducted with students and teachers participating in the pilot indicated that lower-performing students appreciated being treated equally to their higher-performing peers, and higher-performing students appreciated helping their peers. However, higher-performing students also complained of increased disciplinary disruptions and receiving less support from teachers.

According to an editorial published in the Stamford Advocate, the CP track included between 70 and 80 percent of students in 2010. Track assignments were flexible, so that students can be assigned to the CP track or the Honors track in different subjects. The curriculum for the Honors and CP tracks were identical; however, students in the Honors track were expected to complete more work independently, and more classroom time was dedicated to connecting and extending concepts. Periodic regrouping assessments allowed students to advance from the CP to the Honors track.

Stamford Public Schools used the Workshop Model for elementary and middle school mathematics and ELA instruction. This model replaced whole-group instruction with teacher-facilitated group work. Small-group assignments within classrooms allowed Stamford Public Schools to eliminate tracking while differentiating instruction for students at different skill levels. In addition, the workshop model encouraged deeper thinking and led to a shift in the teacher’s role from an emphasis on lecturing and conveying knowledge to facilitating group work.

Support for students included the Advancement Via Individual Determination (AVID) program, which prepares students to take rigorous high school courses. At the high school level, Stamford Public Schools encouraged low-income and minority students to take AP courses through the Project Opening Doors (POD) program. Initially funded by a three-year grant, POD increased the overall number of students taking AP tests from 400 in 2010 to 545 in 2012.91 Stamford Public Schools also offered English and mathematics enrichment classes two days each week, and increased instructional time by extending class periods from 45 to 60 minutes.92

Challenges to Detracking

The Middle School Transformation has faced significant challenges, including opposition from parents who claim that detracking results in overly heterogeneous ability groups that force teachers to neglect either lower-performing or higher-performing students, and that the program was developed with insufficient input from teachers and parents.93 Divisions over the detracking initiative also affect relations between members of the school board, making it difficult for outside organizations to maintain relationships with Stamford Public Schools.94

The district held a forum to discuss the Middle School Transformation, but opponents of the program criticized the district superintendent for conflating the equity effects of permanent tracking with temporary ability grouping.95 A 2013 review of Stamford Public Schools, prepared for the GE Foundation’s Developing Futures in Education Evaluation Series, reported that no major initiatives to communicate with parents or the community had been developed at the time.96

In addition, an internal review of Stamford Public Schools’ strategic plan found that the curriculum for the academic support period was insufficiently rigorous. In response, Stamford Public Schools began redeveloping this curriculum in the 2012-2013 school year.97 The GE Foundation’s 2013 review of Stamford Public Schools found that, despite the standardization of middle school curricula, the district continued to face challenges in ensuring the consistent implementation of curricula across schools, due partially to limits on the central administration’s ability to mandate specific instructional practices within schools. Consistency appeared to be a greater issue for the science curriculum, which does not have the same state-mandated accountability requirements as mathematics and literacy.98

The district has implemented a professional development program, initially led by outside curriculum consultants, to ensure the fidelity of implementation. Stamford Public Schools employed school-based coaches to facilitate the initial adoption of the new mathematics curriculum, but replaced full-time coaches with part-time coaches who also taught in their field after the curriculum was fully implemented. Professional Learning Communities continue to support curriculum fidelity through classroom observations. The district also allows individual teachers to suggest revisions or modifications to its new curricula.99

Outcomes

Anecdotal evidence suggests that detracking led to positive outcomes for students in Stamford. In the early portion of the initiative, classroom teachers reported a decrease in behavior referrals, along with an improvement in test scores.100 Achievement gaps as measured by standardized tests declined substantially from 2006-2013. In addition, the overall percentage of students taking AP courses in Stamford Public Schools increased from 38 percent of the graduating class of 2009 to 46 percent of the graduating class of 2013, with the largest increase among Hispanic students. The overall percentage of students in Grades 3-8 scoring at or above the Proficient level on the Connecticut Mastery Tests in mathematics and reading also increased from 2007 to 2013, suggesting that the district has been able to reduce achievement gaps without sacrificing overall achievement.101

99 Ibid., pp. 15–18.
PROJECT EVALUATION FORM

Hanover Research is committed to providing a work product that meets or exceeds partner expectations. In keeping with that goal, we would like to hear your opinions regarding our reports. Feedback is critically important and serves as the strongest mechanism by which we tailor our research to your organization. When you have had a chance to evaluate this report, please take a moment to fill out the following questionnaire.

CAVEAT

The publisher and authors have used their best efforts in preparing this brief. The publisher and authors make no representations or warranties with respect to the accuracy or completeness of the contents of this brief and specifically disclaim any implied warranties of fitness for a particular purpose. There are no warranties that extend beyond the descriptions contained in this paragraph. No warranty may be created or extended by representatives of Hanover Research or its marketing materials. The accuracy and completeness of the information provided herein and the opinions stated herein are not guaranteed or warrantied to produce any particular results, and the advice and strategies contained herein may not be suitable for every partner. Neither the publisher nor the authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. Moreover, Hanover Research is not engaged in rendering legal, accounting, or other professional services. Partners requiring such services are advised to consult an appropriate professional.